Pre-Algebra

100 Reproducible Activities

Topics Include:

Number Theory I, Number Theory II,
Integers and Decimals, Fractions and Mixed Numbers,
Operations with Fractions and Mixed Numbers, and More

← Table of Contents

Number Theory

Prime Factorization	
Least Common Multiple	
Greatest Common Factor	
Exponents	4
Exponents and Multiplication	
Exponents and Division	6
Scientific Notation	
Square Roots	8
Cube Roots	9
Order of Operations	10
Distributive Property	11
Divisibility Rules	12
Number Patterns—Arithmetic Sequences	13
Number Patterns—Geometric Sequences	14
Estimation—Rounding	15
Estimation—Front-End Estimation	16
Integers	
Comparing Integers	
Adding Integers Using Absolute Value	
Subtracting Integers	
Multiplying Integers	20
Dividing Integers	21
Fractions	
Comparing Fractions	
Mixed Numbers and Improper Fractions I	
Mixed Numbers and Improper Fractions II	
Equivalent Fractions I	
Equivalent Fractions II	
Fractions in Lowest Terms	
Finding a Least Common Denominator	
Fractions and Decimals: Converting a Fraction to a Decimal	
Adding Fractions with Like Denominators	
Adding Fractions with Unlike Denominators	
Adding Mixed Numbers	
Subtracting Fractions with Like Denominators	
Subtracting Fractions with Unlike Denominators	
•	

Subtracting Mixed Numbers35	5
Subtracting Mixed Numbers with Regrouping	5
Multiplying Fractions	7
Multiplying Mixed Numbers38	3
Dividing Fractions)
Dividing Mixed Numbers)
Decimals	
Reading Decimals41	1
Writing Decimals	2
Comparing Decimals	
Decimals and Fractions: Converting a Decimal to a Fraction44	4
Adding Decimals	5
Subtracting Decimals	5
Multiplying Decimals	7
Dividing a Decimal by a Whole Number	3
Dividing a Decimal by a Decimal)
Percents	
Ratios)
Unit Rates	1
Proportions	2
Solving Proportions	3
Fractions and Percents54	1
Decimals and Percents55	5
Find the Percent	5
Percent of a Number (Finding the Part)57	7
Finding a Number When the Percent Is Known58	3
Discount)
Markup)
Percent of Increase	1
Percent of Decrease	2
Expressions and Equations	
Writing a Variable Expression—Addition and Multiplication	3
Writing a Variable Expression—Subtraction and Division	1
Like Terms	5
Simplifying a Variable Expression	5
Evaluating Variable Expressions	7
Writing Equations with One Variable	3

Writing an Equation with Two Variables	69
Solving One-Step Equations by Adding or Subtracting	70
Solving One-Step Equations by Multiplying or Dividing	71
Solving Two-Step Equations	72
Solving Multi-Step Equations	73
Plotting Points on a Coordinate Plane	74
Finding Solutions of Linear Equations	75
Slope of a Line	76
Slope Intercept Form	77
Graphing a Linear Equation	78
Solving Systems of Equations by Substitution	79
Solving Systems of Equations by Graphing	80
Polynomials	
What Is a Polynomial?	81
Adding Polynomials	
Subtracting Polynomials	
Multiplying a Polynomial by a Monomial	
Multiplying Binomials	
Inequalities	
Writing Inequalities	86
Graphing Inequalities	
Solving One-Step Inequalities by Adding or Subtracting	
Solving One-Step Inequalities by Multiplying or Dividing	
Solving Two-Step Inequalities	
Graphing Linear Inequalities	
Statistics	
Mean	92
Median	93
Median	
Mode	94
Mode	94 95
Mode	94 95 96
Mode	94 95 96 97
Mode	94 95 96 97 98
Mode	94 95 96 97 98 99
Mode Theoretical Probability The Fundamental Counting Principle Combinations Permutations. Independent Events Dependent Events.	94 95 96 97 98 99

Prime Factorization

A number that has only two factors, 1 and itself, is called a *prime number*. Numbers such as 2, 3, 7, and 11 are prime numbers. A number that has more than two factors is a *composite number*. Numbers such as 4, 8, 9, and 15 are composite numbers.

You can write any composite number as a product of prime numbers. For example, you can write 18 as the product of several prime numbers.

$$18 = 2 \times 9$$
 prime number composite number

As you can see 9 is also a composite number. You can factor 9 to 3×3 .

$$18 = 2 \times 9 = 2 \times 3 \times 3$$

Rules for Prime Factorization

- 1. Find two factors of the number.
- **2.** Determine if the factors are prime.
- **3.** Factor the composite numbers again. Repeat until you have only prime numbers.

 $20 = 5 \times 4$

Example

Find the prime factorization of 20.

Step 3 Factor the composite numbers again.
$$4 = 2 \times 2$$
, so $20 = 5 \times 4 = 5 \times 2 \times 2$ All the factors are now prime numbers.

Practice

Find the prime factorization of each number.

$$32 = 2 \times$$

Least Common Multiple

A multiple of a number is the product of the number and a whole number. For example, multiples of 4 are:

$$4 \times 0 = 0$$

$$4 \times 1 = 4$$

$$4 \times 2 = 8$$

$$4 \times 3 = 12$$

$$4 \times 4 = 16$$

$$4 \times 5 = 20$$

Therefore the multiples of 4 are 0, 4, 8, 12, 16, 20, and so on. A common multiple of two different numbers is a number that is a multiple of both of those numbers. For example, 12 is a multiple of 3, 4, and 6.

The *least common multiple* (LCM) is the smallest common multiple of two numbers (not including 0).

Rules for Finding the Least Common Multiple

- 1. List all the multiples of each number.
- **2.** Find the smallest number (other than zero) that is the same in each list. That is your least common multiple.

Example

Find the least common multiple of 3 and 5.

Step 1 List all of the multiples of each number.

Multiples of 3: 0, 3, 6, 9, 15, 18 Multiples of 5: 0, 5, 10, 15, 20

Step 2 Find the smallest number (other than zero) that is the same on each list.

The smallest multiple common to 3 and 5 is 15.

Practice

1. Find the least common multiple of 4 and 6.

List all of the multiples of each number.

Multiples of 4: 0, 4, 8, 12, 16, 20

Multiples of 6:

Find the smallest number (other than zero) that is the same on each list.

The smallest number on each list is ______, so the LCM is _____.

List the first six multiples of each number.

Find the least common multiple of each pair of numbers.

- **5.** 2 and 6 _____
- **8.** 6 and 9
- **6.** 4 and 5 _____
- **9.** 9 and 12 _____
- **7.** 3 and 7 ______ **10.** 8 and 10 _____

Greatest Common Factor

The numbers that you multiply are called *factors*. The result, or the answer of a multiplication sentence, is called the *product*. There can be several factors that you can multiply to get a certain number. For example, the factors of 12 are found by thinking of all the combinations of two numbers that when multiplied will equal 12.

$$1 \times 12 = 12$$
 $2 \times 6 = 12$ $3 \times 4 = 12$

$$2 \times 6 = 12$$

$$3 \times 4 = 12$$

The factors of 12: 1, 2, 3, 4, 6

A number can be a factor in two different numbers. For example, 3 is a factor of 9 $(3 \times 3 = 9)$ and $15 (3 \times 5 = 15)$.

The largest common factor of two numbers is called the *greatest common factor* (GFC).

Rules for Finding the Greatest Common Factor

- 1. List the multiples (factors) of each number.
- **2.** Find the numbers that are the same on both lists.
- **3.** Of the numbers that are the same, find the largest number.

Example

Find the greatest common factor of 12 and 18.

Step 1 List all the multiples (factors) of each number.

Multiples of 12: 1, 2, 3, 4, 6, 12 Multiples of 18: 1, 2, 3, 6, 9, 18

Step 2 Find the numbers that are the same in each list.

The numbers that are the same are 1, 2, 3, 6.

Step 3 Of the numbers that are the same,

find the largest number.

The largest number is 6, so 6 is the greatest common factor of 12 and 18.

Practice

1. Find the greatest common factor of 8 and 14.

List all the multiples (factors) of each number.

Multiples of 8: _____

Find the numbers that are the same in each list.

The numbers that are the same are _____

Multiples of 14:

Of the numbers that are the same, find the largest number.

and _____. The largest number is _____, so _____ is

the greatest common factor of 8 and 14.

List the factors of each of the numbers.

Find the greatest common factor (GCF).

- **2.** 10 _____
- **5.** 16 and 24 _____
- **6.** 10 and 18 _____
- **7.** 22 and 44 _____

Exponents

You can show the repeated multiplication of the same number using *exponents*. In an expression such as 4^3 , the "4" is known as the *base*, and the "3" is the *exponent*.

Rules for Working with Exponents

To solve an expression with an exponent:

Multiply the base by itself the number of times equal to the exponent. To write an expression using an exponent:

Count the number of times a number is multiplied by itself; that amount is your exponent.

The number being multiplied is the base.

Example

Solve the following expression. 5³

Multiply the base by itself the number of times equal to the exponent.

The exponent is 3, so you multiply 5 by itself 3 times: $5^3 = 5 \times 5 \times 5 = 125$.

Write $6 \times 6 \times 6 \times 6$ using an exponent.

Step 1 Count the number of times a number is multiplied by itself, that amount is your exponent.

6 is multiplied by itself 4 times; the exponent is 4.

Step 2 The number being multiplied is the base.

6 is being multiplied by itself, so 6 is the base: $6 \times 6 \times 6 \times 6 = 6^4$.

Practice

1. Solve the following expression. 2^6

Multiply the base by itself the number of times equal to the exponent.

2 × 2 × 2 × ______ = ____

2. Write the expression $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$ using an exponent.

Count the number of times a number is multiplied by itself; that amount is your exponent.

____ is multiplied by itself ____ times.

The number being multiplied is the base.

$$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 =$$

Solve the following expressions.

Write the following expressions using an exponent.

6.
$$10 \times 10 \times 10 \times 10 =$$

7.
$$6 \times 6 \times 6 =$$

8.
$$4 \times 4 =$$

Exponents and Multiplication

When multiplying two expressions with exponents where the base is the same, you follow a couple of simple rules. Look at the examples below.

$$6^3 \times 6^5 = 6^8$$

$$6^3 \times 6^5 = 6^8$$
 $12^2 \times 12^{12} = 12^{14}$ $7^2 \times 7^8 = 7^{10}$

$$7^2 \times 7^8 = 7^{10}$$

Rules for Exponents and Multiplication

- **1.** Add the exponents. The sum is your new exponent.
- **2.** Keep the base the same.

Example

Multiply. $5^2 \times 5^3$

Step 1 Add the exponents. The sum is the new exponent.

$$2 + 3 = 5$$

Step 2 Keep the base the same.

$$5^2 \times 5^3 = 5^{2+3} = 5^5$$

Practice

Multiply.

1. $10^3 \times 10^5$

Add the exponents. The sum is the new exponent.

Keep the base the same.

 $10^3 \times 10^5 = 10$ = 10

- **2.** $2^4 \times 2^3 =$ ______
- **3.** $5^1 \times 5^0 =$
- **4.** $6^4 \times 6^{10} =$ _____
- **5.** $12^2 \times 12^{15} =$
- **6.** $8^4 \times 8^4 =$
- 7. $9^3 \times 9^6 =$
- 8. $10^{10} \times 10^5 =$
- **9.** $5^4 \times 5^{-2} =$
- **10.** $12^{10} \times 12^{-5} =$
- 11. $6^7 \times 6^{-7} =$

Exponents and Division

When dividing two expressions with exponents where the base is the same, you follow a couple of simple rules. Look at the examples below.

$$6^5 \div 6^2 = 6^3$$

$$6^5 \div 6^2 = 6^3$$
 $12^9 \div 12^3 = 12^6$ $\frac{9^{16}}{9^9} = 9^7$

$$\frac{9^{16}}{9^9} = 9^7$$

Rules for Exponents and Division

- **1.** Subtract the exponent in the divisor from the exponent in the dividend.
- **2.** Keep the base the same.

Example

Divide. $5^6 \div 5^2$

- **Step 1** Subtract the exponents. The sum 6-2=4is the new exponent.

Step 2 Keep the base the same.

$$5^6 \div 5^2 = 5^{6-2} = 5^4$$

Practice

Divide.

1. $6^7 \div 6^5$

Subtract the exponents. The sum is the new exponent.

Keep the base the same.

$$6^7 \div 6^5 = 6$$

- **2.** $2^8 \div 2^2 =$ ______
- **3.** $16^5 \div 16^1 =$
- **4.** $8^8 \div 8^0 =$
- **5.** $9^7 \div 9^7 =$ ______
- **6.** $12^{10} \div 12^4 =$
- 7. $7^{10} \div 7^{-4} =$
- **8.** $4^5 \div 4^{-2} =$
- **9.** $6^{-2} \div 6^2 =$ _____
- **10.** $\frac{13^4}{12^2} =$

Scientific Notation

A shorthand way to write a large number or small number is to use *scientific notation*.

$$3,400 \rightarrow 3.4 \times 10^3$$

$$0.00923 \rightarrow 9.23 \times 10^{-3}$$

As you can see, a number in scientific notation is made of a number between 1 and 10 multiplied by 10 raised to a power.

Rules for Using Scientific Notation

- 1. Move the decimal point to the left or right to get a number between 1 and 10.
- **2.** Multiply that number by 10 with an exponent.
- **3.** The exponent is equal to the number of places the decimal point moved.
- **4.** The exponent is positive if the decimal point is moved to the left; negative if moved to the right.

Example

Write 462,000 in scientific notation.

- **Step 1** Move the decimal point to the left or right to get a number between 1 and 10.
- 462,000 (5 decimal places): 4.62
- **Step 2** Multiply the number by 10 with an exponent.
- $4.62 \times 10^{?}$
- **Step 3** The exponent is equal to the number of places the decimal point moved.
- The decimal point moved 5 places.
- 4.62×10^{5}
- **Step 4** The exponent is positive if the decimal point is moved to the left; negative if moved to the right.
- The decimal point moved to the left. 4.62×10^5

Practice

Write each number in scientific notation.

1. 0.000433

- Move the decimal point to the left or right to get a number between 1 and 10.
- 0.000433 (_____ decimal places): 4.33
- Multiply the number by 10 with an exponent.
- 4.33 _____
- The exponent is equal to the number of places the decimal point moved.
- 4.33×10
- The exponent is positive if the decimal point is moved to the left; negative if moved to the right.
- 4.33×10
- **2.** 25,000 _____
- **5.** 0.015 _____
- **3.** 4,000,000 _____
- **6.** 0.000791 _____
- **4.** 663,200 _____
- **7.** 0.0000042 _____

Square Roots

When you multiply a number by itself (for example, 4×4), you *square* the number (in this case, 4). The opposite of squaring a number is to find the *square root* of a number. The square root of a given number is the number that, when squared, results in the given number.

For example, 4 squared is 16 (4 × 4 = 16). The square root of 16 is 4 ($\sqrt{16}$ = 4). As you can see, the square root of a number uses the square root symbol ($\sqrt{}$) and the number.

Rules for Finding the Square Root

- 1. Look at the number under the square root symbol. Use guess and test, or a table of squares or square roots to find the square root. Or
- **2.** Using a calculator, enter a number, press the square root key $(\sqrt{})$, and equals (=) sign.
- **3.** The square root of any positive number can be either positive or negative; you must include both possibilities in your answer.

Example

What is $\sqrt{144}$?

- **Step 1** Look at the number under the square root symbol.
 - under the square You want to find the square root of 144.
- **Step 2** Use guess and test, or a square root table.
- You know that $10 \times 10 = 100$, so $\sqrt{144}$ will be greater than 10. By guess and test, you find $12 \times 12 = 144$. So, $\sqrt{144} = 12$.
- **Step 3** The square root of any positive number can be either positive or negative.
- The square root is either 12 or -12.

Practice

Find the square root of the following.

1. $\sqrt{64}$

Look at the number under the square root symbol.

You need to find the square root of _____ or find what number _____ by itself equals _____.

Use guess and test, or a square root table.

You know that _____ = 25. So ____ is greater than ____. By guess and test, ____ = 64. So, $\sqrt{64}$ = ____.

The square root of any positive number can be either positive or negative.

The square root is either ______.

- **2.** $\sqrt{121} =$ _____
- **4.** $\sqrt{841} =$
- **3.** $\sqrt{49} =$
- **5.** $\sqrt{289} =$